Becky
Becky Hi! Welcome to my blog : )

[수리통계학 I] 8, 9강 요약 정리

[수리통계학 I] 8, 9강 요약 정리

[수리통계학 I] Conditional Distribution ~ Extension

8, 9강 요약 정리

부산대학교 김충락 교수님의 2020년 1학기 KOCW 강의를 들으며 요약하는 글입니다.

8강 링크
9강 링크

목차
1. Conditional Distribution
2. Correlation Coefficient
3. Independent Random Variables
4. Extension to Several Random Variables
5. Transformation of Random Vectors


Conditional Distribution

  • $p_{X_2 \vert X_1}(x_2 \vert x_1) = \frac{p_{X_1}(x_1)}{p_{X_1, X_2}(x_1, x_2)}$ : conditional pmf of $X_2$ given $X_1= x_1$
  • $f_{X_2 \vert X_1}(x_2 \vert x_1) = \frac{f_{X_1}(x_1)}{f_{X_1, X_2}(x_1, x_2)}$ : conditional pdf of $X_2$ given $X_1= x_1$

  • 분자: joint / 분모: marginal

-

  • $P(a < X_2 < b \vert X_1=x_1) = \int_{a}^{b} f(x_2 \vert x_1) \, dx_2$

  • conditional mean of $u(X_2)$: $E[u(X_2)\vert x_1]= \int_{-\infty}^{\infty} u(x_2)f(x_2\vert x_1) \, dx_2$
  • conditional var. of $X_2$: $Var(X_2\vert X_1)= E[\lbrace X_2 - E(X_2\vert x_1)\rbrace^2 \vert x_1] = E({X_2}^2 \vert x_1) - E^2(X_2 \vert x_1)$

-

  • Double expectation theorem: $E[E(X_2 \vert X_1)] = E(X_2)$

  • $Var[E(X_2\vert X_1)] \leq Var(X_2) = Var[E(X_2\vert X_1)] + E[Var(X_2\vert X_1)]$


Correlation Coefficient

  • $Cov(X, Y) := E[(X_1-\mu_1)(Y-\mu_2)] = E(XY) - E(X)E(Y)$ : covariance(공분산) between X and Y

  • Corr. coef.: $\rho := \frac{Cov(X, Y)}{\sigma_1\sigma_2} = \frac{E[(X-\mu_1)(Y-\mu_2)]}{\sigma_1\sigma_2}$

  • if $E(X\vert Y)$ is linear in $X$

    • $E(Y\vert X) = \mu_2 + \rho\frac{\sigma_2}{\sigma_1}(X-\mu_1)$
    • $E[Var(Y\vert X)]= {\sigma_2}^2(1-\rho^2)$

Independent Random Variables

  • $X$와 $Y$가 독립이다: $f_{X,Y}(x,y)= f_X(x)f_Y(y)$

  • $X$ and $Y$ is indep. $\Leftrightarrow f_{X,Y}(x,y)= g(x)h(y)$, $g(x)$와 $h(y)$가 각각 x와 y에 대한 함수

  • $X$ and $Y$ is indep. $\Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y)$

  • $X$ and $Y$ is indep. $\Leftrightarrow P(a < X \leq b, c < Y \leq d) = P(a < X \leq b)P(c < Y \leq d)$

  • $X$ and $Y$ is indep. $\Rightarrow E[u(X)v(Y)] = E[u(X)]E[v(Y)]$

  • $X$ and $Y$ is indep. $\Leftrightarrow M(t_1, t_2)= M(t_1,0)M(0,t_2)$


Extension to Several Random Variables

$\mathbf{X} = (X_1, \cdots, X_n)^T$: n-dim random vector

  • $F_{\mathbf{X}}(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x}) = P(X_1 \leq x_1, \cdots, X_n \leq x_n)$ : joint cdf

  • $Y= u(X_1, \cdots, X_n) \Rightarrow E(Y)= \int \cdots \int u(x_1,\cdots,x_n)f_{X_1,\cdots,X_n}(x_1,\cdots,x_n) \, dx_1\cdots dx_n$

    • $f_{2,\cdots,n\vert1}(x_2,\cdots,x_n \vert x_1) = \frac{f_{X_1,\cdots,X_n}(x_1,\cdots,x_n)}{f_1(x_1)}$
    • $f_{1\vert 2,\cdots,n}(x_1 \vert x_2,\cdots,x_n) = \frac{f_{X_1,\cdots,X_n}(x_1,\cdots,x_n)}{f_{X_2,\cdots,X_n}(x_2,\cdots,x_n)}$

-

  • mutually indep.이면 반드시 pairwise indep.이지만, 반대는 성립하지 않음.

  • iid: independent and identically distributed

  • $E(\mathbf{X}) = (E(X_1),\cdots,E(X_n))^T$
  • $E(\mathbf{W}) = [E(W_{ij})]$, where $\mathbf{W}$ is mxn matrix of r.v.s

  • dlalwl

-

  • $E[\mathbf{A}_1\mathbf{W}_1 + \mathbf{A}_2\mathbf{W}_2] = \mathbf{A}_1E[\mathbf{W}_1] + \mathbf{A}_2E[\mathbf{W}_2]$
  • $E[\mathbf{A}_1\mathbf{W}_1 \mathbf{B}] = \mathbf{A}_1E[\mathbf{W}_1]\mathbf{B}$
    • $\mathbf{W}_1$, $\mathbf{W}_2$: mxn matrices of r.v.’s
    • $\mathbf{A}_1$, $\mathbf{A}_2$: kxm matrices of constants
    • $\mathbf{B}$: nxl matrix of constants
  • $\mathbf{\mu} = E(\mathbf{X})$: mean of $\mathbf{X}$
  • $Cov(\mathbf{X})= E[(\mathbf{X}-\mathbf{\mu})(\mathbf{X}-\mathbf{\mu})’]= E[\mathbf{X}\mathbf{X}’] - \mathbf{\mu}\mathbf{\mu}’ = [\sigma_{ij}]$ : variance-covariance matrix (분산-공분산 행렬, nxn)
    • alwlal
  • $Cov(\mathbf{AX}) = \mathbf{A}Cov(\mathbf{X})\mathbf{A}’$

  • $Cov(\mathbf{X})$ is p.s.d. i.e. $\mathbf{a}Cov(\mathbf{X})\mathbf{a}’ \geq 0$

Transformation of Random Vectors

$(X_1,\cdots,X_n) \rightarrow (Y_1,\cdots,Y_n)$ s.t. $y_1= u_1(x_1,\cdots,x_n)$, $\cdots$, $y_n= u_n(x_1,\cdots,x_n)$

  1. one-to-one transformation
    • $x_1= w_1(y_1,\cdots,y_n$, $\cdots$, $x_n= w_n(y_1,\cdots,y_n)$
    • dalwl

    • jpdf of $Y_1,\cdots,Y_n$: $g(y_1,\cdots,y_n)= \vert J\vert f(w_1(y_1,\cdots,y_n),\cdots,w_n(y_1,\cdots,y_n))$
  2. many-to-one transformation
    • $\bigcup_{i=1}^{k} A_i = S$ and $A_i \cap A_j = \emptyset$인 exhaustive sets $A_1,\cdots, A_n$
    • $A_i \longrightarrow \mathscr{T}$ is 1-1
  • $g(y_1,\cdots,y_n)= \sum_{i=1}^{k} \vert J_i\vert f(w_{1i}(y_1,\cdots,y_n),\cdots,w_{ni}(y_1,\cdots,y_n))$

Scroll to top ↑

comments powered by Disqus