[수리통계학 I] 6, 7강 요약 정리
[수리통계학 I] Multivariate Distributions
6, 7강 요약 정리
부산대학교 김충락 교수님의 2020년 1학기 KOCW 강의를 들으며 요약하는 글입니다.
목차
1. Distributions of Two Random Variables
2. Examples
3. Transformations: Bivariate r.v.s
4. Examples- transformation
Distributions of Two Random Variables
- $(X_1, X_2)$: random vector
- $\mathscr{D}= \lbrace(x_1, x_2): x_1= X_1(c), x_2= X_2(c), c\in\mathscr{C}\rbrace$
- vector notation $\mathbf{X} = {X_1\choose X_2} = (X_1, X_2)’ = (X_1, X_2)^T$
- cdf of $\mathbf{X}$
- $F_{X_1,X_2}(x_1, x_2) = P(X_1 \leq x_1, X_2 \leq x_2)$
- $P(a_1 < X_1 \leq b_1, a_2 < X_2 \leq b_2)$
$= F_{X_1,X_2}(b_1, b_2) - F_{X_1,X_2}(a_1, b_2) - F_{X_1,X_2}(b_1, a_2) + F_{X_1,X_2}(a_1, a_2)$
- joint prob. mass function if $\mathbf{X}$ is discrete: $p_{X_1,X_2}(x_1, x_2) = P(X_1= x_1, X_2= x_2)$
- joint pdf for continuous r.v.: $f_{X_1,X_2}(x_1, x_2) = \frac{\partial^2 F_{X_1,X_2}(x_1, x_2)}{\partial x_1 \partial x_2}$
- $F_{X_1,X_2}(x_1, x_2) = \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_{X_1,X_2}(w_1, w_2) \, dw_1 dw_2$
- Marginal of $X_1$
- cdf: $F_{X_1}(x_1)= \lim_{x_2 \to \infty} F_{X_1,X_2}(x_1, x_2)$
- pmf: $p_{X_1}(x_1)= \sum_{x_2} p_{X_1,X_2}(x_1, x_2)$
- pdf: $f_{X_1}(x_1)= \int_{-\infty}^{\infty} f_{X_1,X_2}(x_1, x_2) \, dx_2$
-
- continuous: $E[g(X_1, X_2)]= \iint g(x_1, x_2)f(x_1, x_2) \, dx_1 dx_2$
- $\iint \vert g(x_1, x_2)\vert f(x_1, x_2) \, dx_1 dx_2 < \infty$
- discrete: $\sum_{x_1} \sum_{x_2} g(x_1, x_2)p(x_1, x_2)$
- $\sum_{x_1} \sum_{x_2} \vert g(x_1, x_2)\vert p(x_1, x_2) < \infty$
- Linearity property of expectation: $E[k_1g_1(X_1, X_2) + k_2g_2(X_1, X_2)] = k_1E[g_1(X_1, X_2)] + k_2E[g_2(X_1, X_2)]$
-
-
$M_{\mathbf{X}}(\mathbf{t}) = E[e^{\mathbf{t}’\mathbf{X}}]$, $\mathbf{t}= (t_1, t_2)^T$, $||\mathbf{t}|| < h$, $h>0$
$= M_{X_1, X_2}(t_1, t_2)= E[e^{t_1X_1 + t_2X_2}]$ : mgf of $\mathbf{X}$ -
$M_{X_1, X_2}(t_1, 0) = \iint e^{t_1x_1}f(x_1, x_2) \, dx_1dx_2 = \int e^{t_1x_1} \lbrace\int f(x_1, x_2) \, dx_2\rbrace \, dx_1$
$= \int e^{t_1x_1} f_{X_1}(x_1) \, dx_1 = E[e^{t_!x_!}] = M_{X_1}(t_1)$ : marginal mgf of $X_1$- similarly, $M_{X_1, X_2}(0, t_2)= M_{X_2}(t_2)$: marginal mgf of $X_2$
Example 1
$f_{X_1,X_2}(x_1, x_2)= x_1 + x_2$, $0 < x_1 < 1$, $0 < x_2 < 1$이다.
$P(X_1 \leq \frac{1}{2})$와 $P(X_1 + X_2 \leq 1)$을 구해보자.
- $P(X_1 \leq \frac{1}{2})$
- $P(X_1 \leq \frac{1}{2})= P(X_1 \leq \frac{1}{2}, 0 \leq x_2 \leq 1)$
$= \int_{0}^{\frac{1}{2}} f_1(x_1) \, dx_1$ -
$f_{X_1}(x_1) = \int f_{X_1,X_2}(x_1, x_2) \, dx_2$
$= \int_{0}^{1} (x_1 + x_2) \, dx_2 = x_1 + \frac{1}{2}$ - $\therefore P(X_1 \leq \frac{1}{2}) = \int_{0}^{\frac{1}{2}} (x_1 + \frac{1}{2}) \, dx_1= \frac{3}{8}$
- $P(X_1 \leq \frac{1}{2})= P(X_1 \leq \frac{1}{2}, 0 \leq x_2 \leq 1)$
- $P(X_1 + X_2 \leq 1)$
- $P(X_1 + X_2 \leq 1)= \int_{0}^{1} \int_{0}^{1-x_2} f_{X_1,X_2}(w_1, w_2) \, dw_1 dw_2$
$= \int_{0}^{1} \int_{0}^{1-x_2} (x_1+x_2) \, dw_1 dw_2 = \frac{1}{3}$
- $P(X_1 + X_2 \leq 1)= \int_{0}^{1} \int_{0}^{1-x_2} f_{X_1,X_2}(w_1, w_2) \, dw_1 dw_2$
Example 2
$f(x_1, x_2)= 8x_1x_2I(0 < x_1 < x_2 < 1)$일 때, $E(X_1{X_2}^2)$와 $E(X_2)$ 그리고 $E[7X_1{X_2}^2 + 5X_2]$를 구해보자.
- $E(X_1{X_2}^2) = \int_{0}^{1} \int{0}^{x_2} x_1{x_2}^2 8x_1 x_2 \, dx_1 dx_2 = \frac{8}{21}$
- $E(X_2)= \int_{0}^{1} x_2 f_{x_2}(x_2) \, dx_2 = \int_{0}^{1} x_2 [\int_{0}^{x_2} 8x_1 x_2 \, dx_1] \, dx_2 = \frac{4}{5}$
- $E[7X_1{X_2}^2 + 5X_2]= \frac{20}{3}$
Example 3
$f(x,y)= e^{-y} I(0 < x < y < \infty)$: jpdf(joint pdf) of $(X, Y)$일 때 mgf를 구해보자.
- $M(t_1, t_2)= \int_{0}^{\infty} \int_{x}^{\infty} e^{t_1x+t_2y}e^{-y} \, dydx = \frac{1}{(1-t_1-t_2)(1-t_2)}$
- mgf of X: $M(t_1,0) = \frac{1}{1-t_1}$
- mgf of Y: $M(0, t_2)= \frac{1}{(1-t_2)^2}$
적분 구간 신경 쓰기!
Transformations
in Bivariate R.V.s
-
goal: $f_{X_1, X_2}(x_1, x_2)$가 주어졌을 때, $Y= g(x_1, x_2)$의 PDF를 구하자!
-
$X_1$과 $X_2$의 jpdf를 알고 있을 때, $Y= g(X_1, X_2)$의 분포를 구하는 방법에는 2가지가 있다.
- Find cdf of Y → take derivative
- Use transformation technique
1. discrete case
-
transformation on $Y= g(x_1, x_2)$
-
$(X_1, X_2)$: discrete r.v. with jpdf $p_{X_1, X_2}(x_1, x_2)$ and support $S$
-
- $p_{Y_1, Y_2}(y_1, y_2) = p_{X_1, X_2}(w_1(y_1,y_2), w_2(y_1,y_2))$, $(y_1, y_2) \in \mathscr{I}$
- $\Rightarrow$ pmf of $Y_i$: $P_{Y_1}(y_1) = \sum_{y_2} P_{Y_1, Y2}(y_1, y_2)$
-
2. Continuous case
- cdf technique: $F_Y(y)= p(g(x_1, x_2) \leq y) \rightarrow f_Y(y)= F_Y’(y)$
- transformation
+ $X_1$, $X_2$의 jpdf $f_{X_1, X_2}(x_1, x_2)$와 support $S$
+ 기본 변환은 discrete case와 똑같이 생각한다. $(x_1, x_2) \rightarrow (y_1, y_2)$일 때, $y_1= u_1(x_1, x_2), y_2= u_2(x_1, x_2)$이고 역함수는 $x_1= w_1(y_1, y_2), x_2= w_2(y_1, y_2)$이다.
+ Jacobian $J = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\
\frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{pmatrix}$
+ jpdf of $Y_1$ and $Y_2$: $f_{Y_1, Y_2}(y_1, y_2)= f_{X_1, X_2}(w_1(y_1,y_2), w_2(y_1,y_2)) \vert J \vert$, $(y_1, y_2) \in \mathscr{T}$
Example 1: discrete
$p_{X_1, X_2}(x_1, x_2)= \frac{u_1^{x_1}u_2^{x_2}e^{-u_1-u_2}}{x_1!x_2!}$, $x_1= 0,1,2,\cdots$, $x_2=0,1,2,\cdots$일 때, $Y_1= X_1 + X_2$의 pdf를 구하여라.
- 이항정리: $(a+b)^n= \sum_{k=0}^{n} {n\choose k}a^k b^{n-k}$
Example 2: continuous
$f_{X_1, X_2}(x_1, x_2)= I(0<x_1<1, 0<x_2<1)$일 때, $Y_1= X_1 + X_2$의 pdf를 구하여라.
- cdf technique
- transformation